

Green Hydrogen: "Zero Emission" Fuel for Mobility

World Future Fuel Summit 16 February 2022

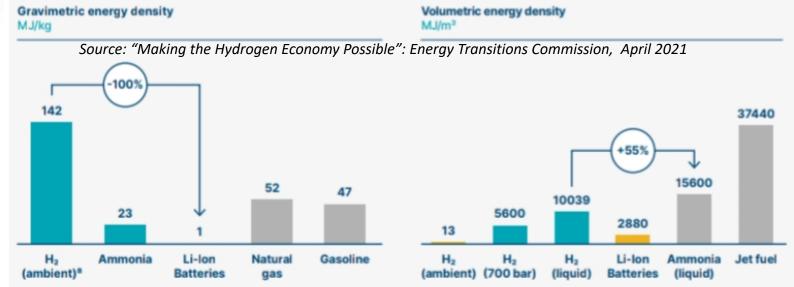
Anjan Ray, Director, CSIR-Indian Institute of Petroleum Ashish Lele, Director, CSIR-National Chemical Laboratory S. Srikanth, Former Director, CSIR-National Metallurgical Laboratory

Selling Points for A Hydrogen Economy

- Hydrogen has the highest gravimetric energy density of all known substances (~120 MJ/kg, compared with ~44MJ/kg for gasoline)
- Can store surplus renewables power when the grid cannot absorb
- Zero tailpipe emissions (No C-C bonds)
- Electricity cables can transport up to 1-2 GW but the average gas pipeline can carry 20 GW and is 10-20 times cheaper to build
- Can piggyback on the fossil fuel infrastructure e.g., pipelines, power plants, storage etc.
- Easy and fast to store and discharge large quantities of hydrogen
- Can help to de-carbonize hard-to-electrify sectors such as long distance transport and heavy industries
- Can replace fossil fuels as a zero-carbon feedstock in chemicals and synthetic fuels production

Where can we find the Hydrogen we need?

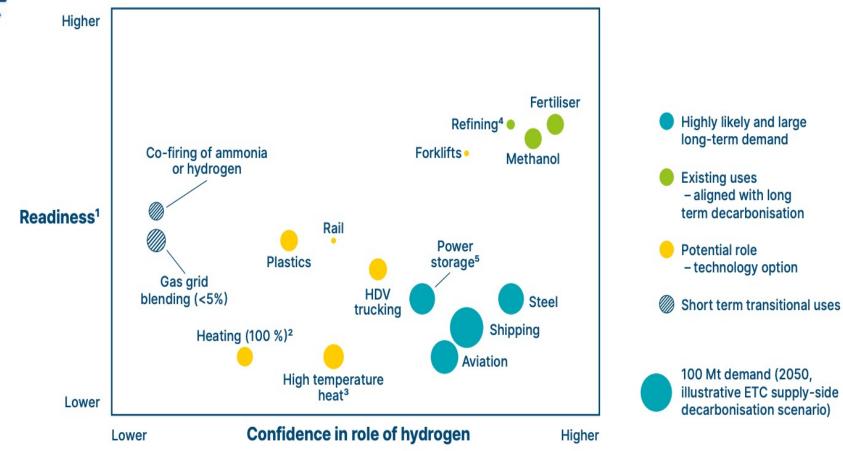
- ~74% H₂ content in the Universe, ~70.5% in the Solar System
- 0.14% in the Earth's Crust, **10.8% in the oceans**; pure H_2 not present in the Earth's atmosphere: water is the best possible source for H_2 on earth
- Rocks formed beneath the ocean floor may be a large and previously overlooked source of free hydrogen gas (Duke University, 2016)


Technology Imperatives – H₂ Production and Utilization

- Sustainable generation (Life Cycle Analysis)
- Affordability (Minimize production cost)
- Delivery (Minimize storage and transport cost and risks)
- Durability (Systems will be expensive must be built to last with minimal down time and acceptable serviceability)

The Challenges Must Not Be Underestimated

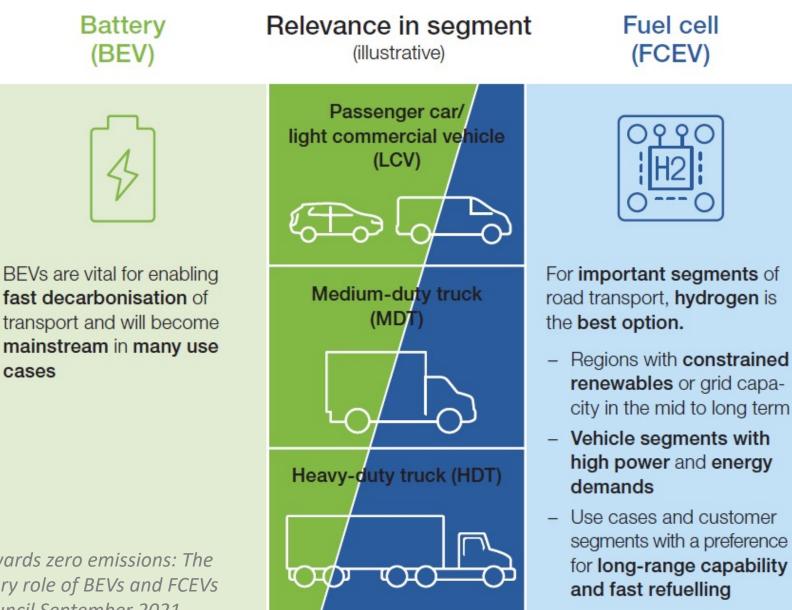
How Much Energy can Hydrogen Store?



- How much of the available energy is lost in the storage cycle?
- Volumetric energy density is rather low. The gravimetric heating value of a *fuel* gas is less relevant for practical applications.
- In general, the volume available for fuel tanks is limited for automotive applications.
- Also, the diameter of pipelines cannot be increased at will

Generate-Store-Transport , or On-Site Generation?

How Ready Is Mobility for Hydrogen?



Source: "Making the Hydrogen Economy Possible": Energy Transitions Commission, April 2021

- For the automotive sector, volumetric energy density remains a challenge therefore on-board production (FCV approach) continues to attract interest
- HCNG is a lower-hanging fruit and may be encouraged right away

BEV and (not vs.) FCV

Roadmap towards zero emissions: The complementary role of BEVs and FCEVs Hydrogen Council September 2021

Indicative Estimated Total Cost of Ownership (TCO) for FCEB

- Capex : 0.35 Mn USD for 12 m AC bus (at scale)
- Travel length : 400 km/ day
- Bus life :10 y
- Capex cost : 20 Rs/ km
- CGH2 cost :4 \$/ kg
- Fuel efficiency : 10 km/ kg
- Opexcost : 30 Rs/ km
- TCO : 50 Rs/ km (10% lower than ICE bus)

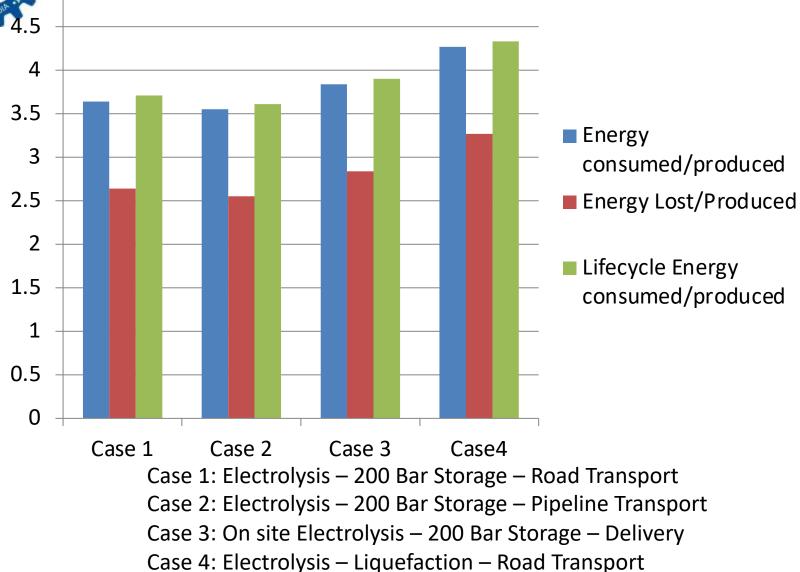
Capex is non-negligible component of TCO

 \rightarrow Fuel cell stack is a large component of the capex

 \rightarrow \rightarrow Hence, need to maximize power density at operating stack voltage

The Sustainability Lens for Green Hydrogen Energy Penalty per kg of H₂ produced by a water electrolyser

Four Situations Modelled


Case 1: Hydrogen produced by water electrolysis, compressed to 200 bars, transported through pipelines, stored at filling stations (at 60 bar) and delivered
Case 2: Hydrogen is produced by water electrolysis, compressed and stored at 200 bars, transported through road, stored in filling stations (at 60 bar) and delivered
Case 3: Hydrogen is produced by water electrolysis on site and delivered
Case 4: Hydrogen is produced by water electrolysis, liquefied & distributed by road

Assumptions Made:

- a) AC/DC conversion efficiency is 94%
- b) Electrolyser energy efficiency taken to be 70%
- c) The electrical energy for electrolysis, storage and transport is supplied externally and not derived from the hydrogen i.e., 1 kg of H₂ produced at the electrolyser is directly available as input to the Fuel Cell for power generation
- d) End-of-life disposal or recycling energy costs are not considered

Life Cycle Energy Ratios: Hydrogen via Electrolysis

All or substantial part of the input energy will have to be Renewable

CSIR's Hydrogen Program: Across the Entire Value Chain

Generation	Storage	Utilization
 Bio-Mass Gasification Coal-bed Methane Gasification Underground Coal Gasification PEM/AEM Electrolysers High Temperature Steam Electrolyzer 	 Storage Materials Type IV Storage Tank Safety Valves Sensors & Detectors 	 PEMFC stacks (HT, LT & Open Cathode) DMFC stacks SOFC stacks (MT & LT) FC components (MEA, Electrode, Catalyst, GDL,
 ○ Photochemical ○ Electrochemical 	 Organic Liquid Carriers 	Membrane, Bipolar Plate, Fixtures, Humidity control)
 Photo-Electrochemical Photo-catalytic CO-PROX Converter 		 FC Test Station Solar H₂ to Chemical Solar Hydrogen Cookstove

Solar Hydrogen

Cookstove

CSIR-CSIO

Open Loop Thermochemical S-I Cycle Hydrogen Generation Hydrogen Storage **Hydrogen Utilization** Gasification Electrolyzers Photo/ **CO-PROX Open Loop Materials** Tanks/Valves/ Fuel Cells Electrochemical SI Cycle Sensors CSIR-CSIR-CECRI **CSIR-NCL** CSIR-CSIR-IIP **CSIR-CSMCRI** CSIR-CMERI **CSIR-NCL CSIR-NCL** CSIR-CECRI NEERI CSIR-**CSIR-CMERI CSIR-CECRI** CIMFR **CSIR-NIIST CSIR-IMMT CSIR-IMMT CSMCRI CSIR-AMPRI CSIR-NPL** CSIR-CSIO **CSIR-CECRI** CSIR-AMPRI CSIR-CGCRI CSIR-CGCRI **CSIR-CMERI** CSIR-IIP

In Summary

- Green Hydrogen for Mobility is making great strides, with HCNG as the bridging solution
- No silver bullet all available sustainable mobility solutions must be deployed, and undistorted markets be allowed to determine winners
- Life Cycle Analysis and Net Energy Ratio tools must be rigorously used to ensure decarbonization objectives are met
- Input energy streams across the value chain for Green Hydrogen needs to be renewable as far as possible
- FCVs need sustained and significant R&D investments to maximize power density and durability

Thank You

Questions?