Green Hydrogen Development initiatives at ONGC Energy Centre

Shaping the Sustainable Future

Dr. D. Parvatalu Domain Expert parvatalu_d@ongc.co.in

WFFS 2022

16.02.2022

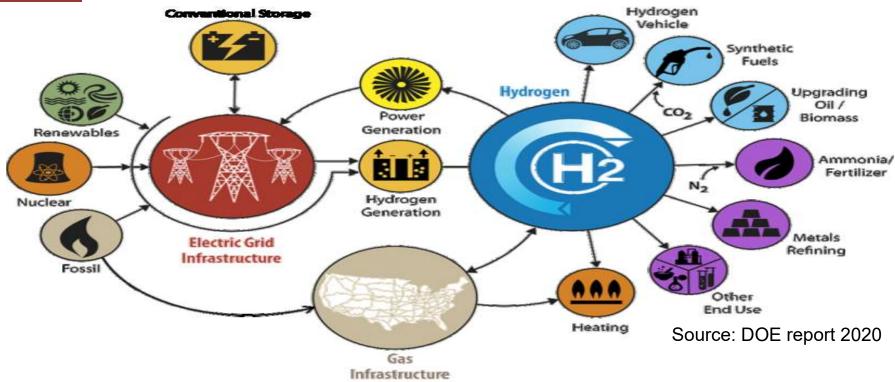
ONGC Energy Centre

ONGC Energy Centre Trust set up by ONGC in August, 2005

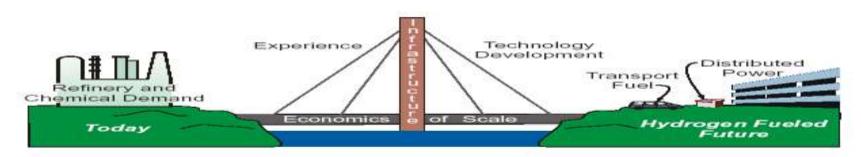
ONGC Energy Centre started collaborative R&D Projects in 2007

VISION: "Harness science and technology to meet national energy needs of tomorrow, in a clean and sustainable manner..."

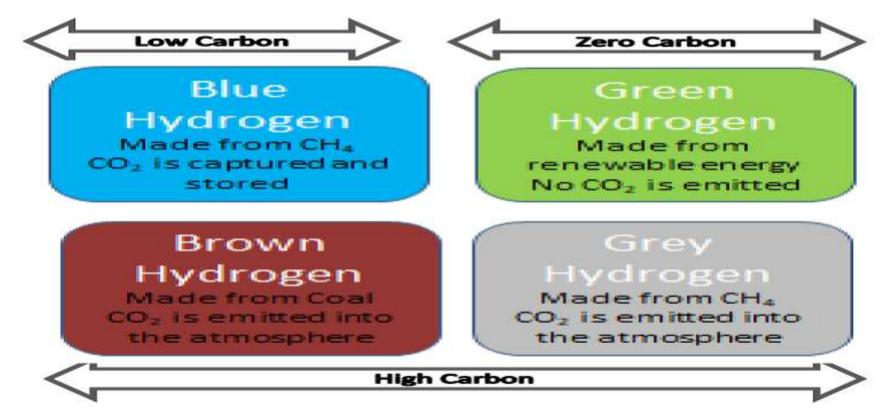
Undertake/assist/collaborate in research in clean and renewable energy technologies


Hydrogen

- Thermochemical Hydrogen generation
- Other methods like HTE, Sear water Electrolysis,
- Heat source integration, Materials Development for Hydrogen programme
- Fuel cells
- Hydrogen Storage
- Solar
 - Power generation, storage, specialized coatings, applications in oil/gas sector
- Bio- Technology for Energy
 - --Conversion of sub-surface unrecoverable oil / coal / lignite to Methane
 - -- Controlling Reservoir souring
- Uranium
 - Subsurface exploration
 - Development of process for In-situ Leaching (Chemical, Microbial, hybrid)
- Geothermal
 - Assessing potential in sedimentary regions for power and heat
- Others

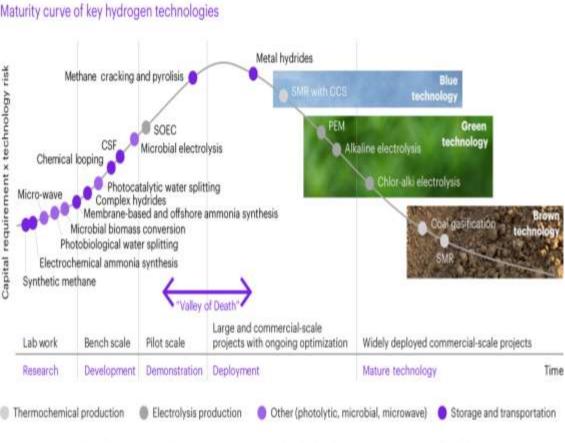

Energy Storage, Efficiency / Energy Recovery relevant to Oil & Gas sector
Eg: Redox Flow batteries, Waste water treatment; CO₂ storage, utilization
etc.,

Hydrogen Economy

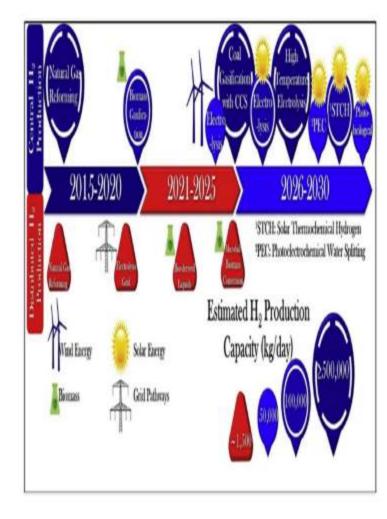


The Growing Industrial Demand for Hydrogen Creates a Bridge to the Hydrogen Economy

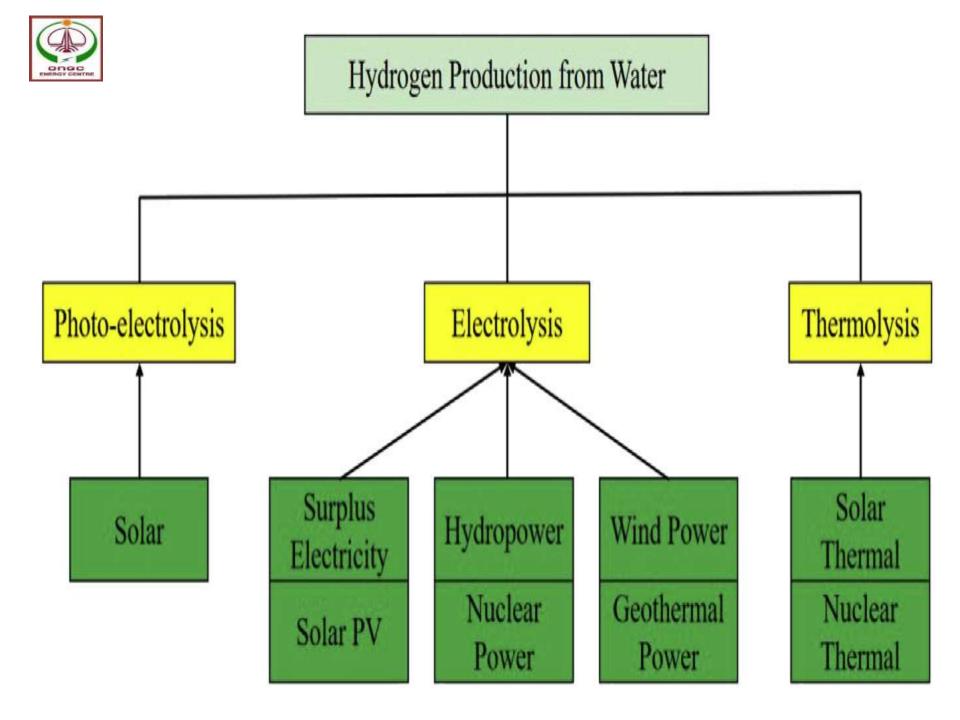
Changing colors of Hydrogen



- Today, hydrogen produced from brown sources (90¢ to \$2.10 per kg) is 2 to 10 times less expensive than green hydrogen (\$2.50 to \$9.50 per kg) or blue hydrogen (\$1.50 and \$2.50 per kg)
- By 2030, the levelized cost of hydrogen (LCOH) for blue hydrogen is expected to close the gap
- Nevertheless, the LCOH is highly impacted by conditioning and transportation steps, which can double the cost.


Global Hydrogen Development Programme

 Green hydrogen by electrolysis and Grey / Brown hydrogen technologies are commercially proven; Remaining all at various RD&D stages



Notes: SMR is cteam methane reforming: CCS is carbon capture storage; SOEC is solid oxide electrolyzer cell; CSF is concentration solar huels. Sources: "The Future of Hydrogen," International Energy Agency, June 2019; "National Hydrogen Roadmap," Commonwealth Scientific and Industrial Research Organisation, 2018; "Hydrogen from Renewable Power," International Renewable Energy Agency, 2015; Kearney Energy Transition Institute analysis

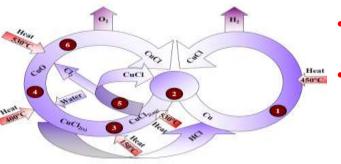
Source: Kearney Energy Transition Institute 2021

DOE production targets

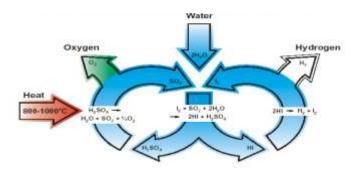
Hydrogen program at ONGC Energy Centre

 ONGC Energy Centre (OEC) Hydrogen Program focuses on indigenous development of hybrid thermochemical water splitting processes for large scale green hydrogen production.

Reaction:

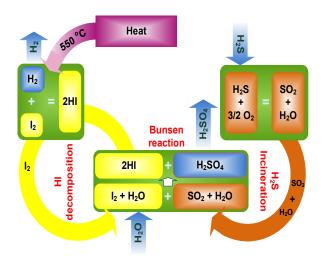

 $H_2(g) + O_2(g) \leftrightarrow H_2O(I) + 286 \text{ kJ/mole}$

✓ Utilizes Renewable sources of energy especially the high temperatures from solar / Nuclear sources


Thermochemical Hydrogen Generation Technologies

OEC has chosen following 3 processes for development

- USA-Canada and collaborators hydrogen @ 55 M3 H2 / day
- India: OEC in collaboration with ICT, Mumbai has developed lab scale Engg facility @ 25-30 l/h Hydrogen & patented; planning for 350 M3/day


Copper-Chloine Cycle 550°C

Iodine-Sulfur close-loop Cycle 900°C

Lab / Bench scale Hydrogen @10-150lph:

- Global: Japan, USA, China, Korea, Europe (UK, France, Italy)
- India: BARC, OEC & Collaborators

Iodine-Sulfur open-loop Cycle 550°C

India is the first country to develop this concept to Lab Engg scale

Efficiencies & Goals

Water Thermo-chemical cycle Electrolysis 60 60 I-S % HTE 50 % Overall H_2 Conv. Eff., 50 Conv. Eff., Cu-Cl Ca-Br 40 **MCE** 40 SPE 30 AWE 30 20 Overall H_2 Goals 20 10 Max. temp 10 0 0 200 400 600 800 1000 600 700 800 900 500 1000 Temperature, °C Temperature, °C

Electrolysis Processes: AW: Alkali Water, MC: Molten Carbonate SP: Solid Polymer, HT: High Temperature

Ref: IAEA-TECDOC-1085:

Thermo-chemical Processes: Cu-Cl: Copper - Chlorine, Ca-Br₂ : Calcium-Bromine, I-S: Iodine-Sulfur Process

Ref: G.E. Besenbruch, L.C. Brown, J.F. Funk, S.K. Showalter, Report GA–A23510 and ORNL Website

OEC Hydrogen programme

Concept to commercialization

Hydrogen generation through thermochemical splitting of water is the focus

- Cu-Cl cycle Lab scale metallic plant @ 25 lph capacity operational since 2016 based on a new process developed. Both national and international patents for process granted. Scale up activities @12 MT/Year (15 M3/h) are planned in 2023.
- I-S cycle Closed-loop in quartz system was established @5LPH Hydrogen generation and operational since 2018; Indian Patents granted for catalysts developed. Scale up in metallic system @300 l/h (27g/h) in 2023 leading to pilot scale demonstration @12MT/Y in 2025.
- I-S cycle Open-loop: Proof of concept in quartz system was established in quartz system. scale up to 25-50lph activity in progress. Pilot plant setup for H2SO4 production @10-12 M.T /day equivalent hydrogen@ 90MT/Y planned at MRPL in 2025.
- Alternate means of Hydrogen generation: Initiated proof of concept work on High Temperature Electrolysis SOEC and planning for Sea water electrolysis.

Hydrogen programme

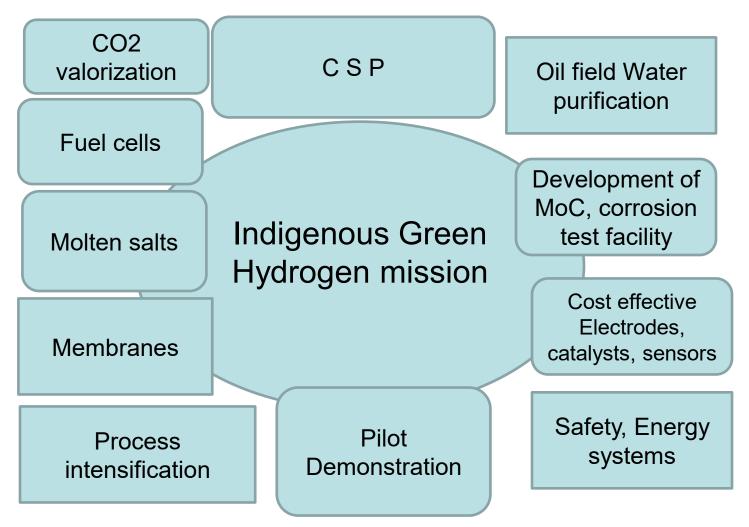
- Hydrogen storage: Hydrogen Storage using Colloidal gas Aphrons(CGAs) and CGAs loaded with Metal hydrides
- Hydrogen for Fuel cell application: Initiated activity on SOFC technologies
- Development of support systems :
 - ✓ H.T-H.P corrosion Test facilities for selection of Materials
 - ✓ MoC for reactors, other process gadgets etc.
 - ✓ Molten salt system for Solar thermal storage for high temperature reactions,
 - ✓ Electrochemical and Ceramic Gas separation membranes
 - ✓ H2S, SO2, H2, Cl2 gas sensors etc.,
 - ✓ Sources of fabrication in progress with collaborative approach
- Development of Other Support systems:
- ✓ Oil field Effluent water purification for Green hydrogen campaign sustainability
- ✓ Energy Storage devices for stationary back up using Vanadium Redox Flow and Iron Redox Flow Batteries, Graphene oxide based Super capacitors for Electric mobility
- \checkmark CO2 valorisation using Hydrogen and water processes etc.

Implementation Strategy

Concept to commercialization

- 1. Collaborations with Centers of Excellence in India to establish proof of concept
- 2. Lab scale Engineering Experiments using indigenous resources
- 3. Heat source integration, Materials, Sensors, Membranes etc., development
- 4. Indigenous Vendor development for fabrications
- 5. Collaborative Consortium to pool & integrate national resources for technology development
- 6. Bridge the gap experiments, Scale up decisions
- 7. Pilot scale demonstration

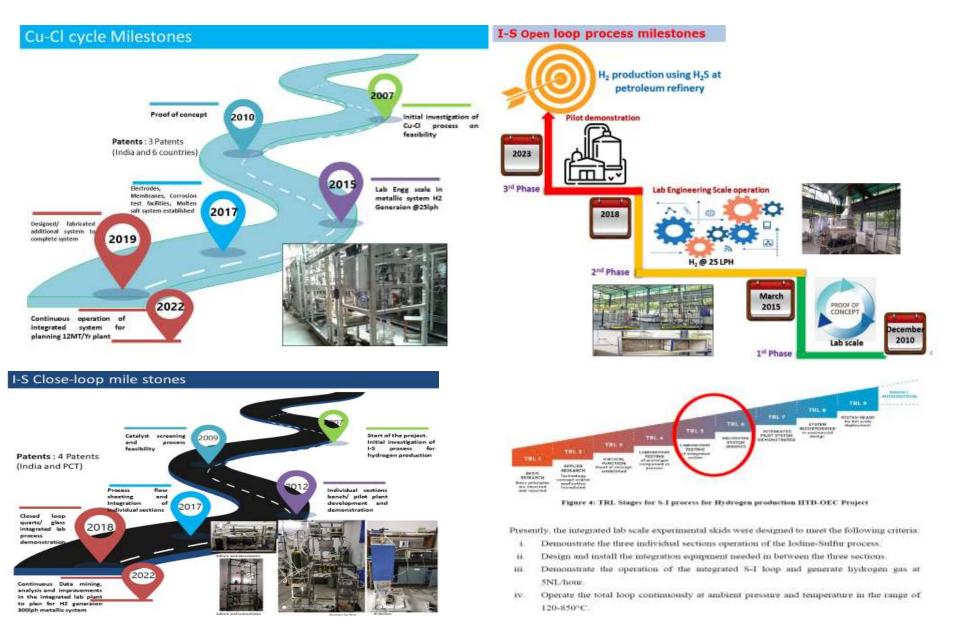
All Efforts Leading to


 Indigenous Technology development for hydrogen generation at mass scale for commercial decisions

Work Execution Strategy

Convergence of R&D Activities

OEC conceptualized Hydrogen Eco-System


Conceptual Green Hydrogen valorization pathways during and beyond transitions

Integrated Plant H₂O Hydrocarbons (Waste) Methanol **Biomass** DME HCOOH Formates CO, Water Syngas (FT Synthesis) Solar Energy splitting Power Alcohols storage Technology Ammonia Fuel Cells **Biomass** 02 H, vehicles Electricity

GD Yadav et al., Clean Technologies and Environmental Policy, 2020

A Glimpse of OEC collaborative efforts.....

Thank You all for kind attention & our collaborators