

Sustainable Aviation Fuels

Dr Anil Kumar Sinha

CSIR – Indian Institute of Petroleum, Dehradun

asinha@iip.res.in

SAF In India- CSIR-IIP-HEFA-SKA-Technical Milestones

First SAF Flight Demonstrations In India- CSIR-IIP-HEFA-SKA

Military Flights

Indian Air Force (IAF) Antonov AN-32 Transport

Republic Day Parade (26 Jan 2019)

Many subsequent flights (**65 h**) including high-altitude take off and landing **IAF-HAL, Dornier: 25 h** Civilian Flight Bombardier Q400 Operated by SpiceJet Dehradun-Delhi, 27 August 2018 210 km / 130 miles / 110 nautical miles 23 on-board observers + 5 crew 25:75 Biofuel/Jet A-1 in one engine All engine parameters satisfactory

Printed from THE TIMES OF INDIA

In a first, IAF uses blended bio-jet fuel to fly aircraft

TNN I Dec 17, 2018, 08:15 PM IST

NEW DELHI: The IAF flew a military aircraft with blended bio-jet fuel for the very first time in India on Monday morning. A Russian-origin AN-32 transport plane was flight-tested, with the 10 per cent bio-jet blended ATF (aviation turbine fuel) made from Jatropha oil, in a sortie flown from the Chandigarh airbase.

"The project to flight-test the bio-jet fuel, with experimental test pilots and engineers from IAF's premier testing establishment ASTE, is a combined effort of IAF, DRDO, directorate general aeronautical quality assurance (DGAGA) and CSIR-Indian institute of petroleum," said IAF spokesperson Wing Commander Anupam Banerjee.

Demand assurance by IAF and Private Airlines; Refinery identified – MRPL-ONGC; Supply sources identified; Engineering partner - EIL

ICAO's Carbon Offset and Reduction Scheme for International Aviation (CORSIA)

Land-locked Developing Countries and States which have less than 0.5% of air traffic (although they can still volunteer).

Operators flying routes between volunteering States will offset emissions based on the average CO2 growth of the aviation sector.

(more States are encouraged to volunteer).

Operators will offset based on average CO2 growth of the sector.

Offset obligations shift to include over 20% of individual operator growth.

Offset obligations shift to be over 70% based on individual operator growth.

OVER 80% OF THE GROWTH IN AIR TRAFFIC CO2 AFTER 2020 WILL BE OFFSET

https://aviationbenefits.org/environmental-efficiency/climate-action/offsetting-emissions-corsia/corsia/corsia-explained/

https://www.icao.int/environmental-protection/Pages/SAF.aspx

Existing and Announced SAF production capacity

± 2.2M ton/year global SAF production near term

https://www.adsgroup.org.uk/sustainability/sustainable-aviation-fuels/

PRODUCER	LOCATION	START UP	ANNUAL CAPACITY		FEEDSTOCK	TECHNOLOGY
Operational - D	: Diesel & Jet					••
World Energy Paramount	Paramount.				Tallow,	Honeywell UOP / Eni Ecofining
Phase 1	CA, USA	2015	114 ML	0.09 Mt	and lipids	
Phase 2		2016	151 ML	0.12 Mt		
Operational - D	Diesel					
Dia mond Green Diesel					Telloui	Honeywell UOP / Eni Ecofining
Phase 1	Norco, LA,	2013	606 ML	0.47 Mt	vegetable oils	
Phase 2	USA	2018	1.1 BL	0.86 Mt	and lipids	
(Phase 3)	# 	(2021)	(2.1 BL)			
Eni S.P.A.					Palm oil	Honeywell
Phase 1	Venice, Italy	2014	513 ML	0.40 Mt	transitioning to lipids and	UOP / Eni Ecofining
Phase 2	R: 	2016	718 ML	0.56 Mt	algal oil	
Neste						
Phase 1	Singapore	2010	1.28 BL	1 Mt	Tellow	Neste NExBTL
(Phase 2)		(2022)	(1.7BL)		ianto ir	
Neste	Rotterdam, Netherlands	2011	1.28 BL	1 Mt	Palm oil transitioning to lipids and other oil seeds	Neste NExBTL
Neste					Palm oil	Neste NEXBTL
Phase 1	Porvoo, Finland	2007	128 ML	0.1 Mt	transitioning to linids and	
Phase 2		2009	128 ML	0.1 Mt	other oil seeds	
Renewable Energy Group (FKA Dynamic Fuels)	Geismar, Louisiana, USA	2010	284 ML	0.22 Mt	Tallow	Syntroleum Biosynfining
UPM Group	Lappeenranta, Finland	2015	120 ML	0.94 Mt	Tall oil from pulp and paper industry	Haldor Topsoe Hydroflex

Total Operational Annual Capacity (2018) 6.4 BL

The present status of different approved technological pathways

	Technology	STATUS	PRODUCER	COMMENTS	सीएसआईआर CSIR भारत का नवाचार इंजन The language coloring
Technology Pathway	Provider				THE ADDRESSORY ENGINE OF ADDR
Hydroprocessed Ester of Fatty Acids - Synthetic Paraffinic Kerosene (HEFA- SPK)	CSIR-IIP	Pilot Scale	CSIR-IIP (India)	Successful Flight trials Bombardier (Q400) a Airforce (AN-32), 2018	– SpiceJet, and Indian 3-2021
	Honeywell UOP	Commercial	Altair (USA)	Lipid feed, 2016, Unit USAF	ed Airlines,
	Axens	commercial	Total (France)	Lipid feed, 2021	
	Neste	Commercial	Neste (Singapore, Finland, Netherlands)	Lipid feed, SAF dist green diesel cut	tilled from
Synthesized Iso-Paraffins (SIP) from Hydroprocessed Fermented Sugars	Amyris	Demo	Total (France)	Sugar feed, flight, prov	ven

The present status of different approved technological pathways

Alcohols-to-Jet Synthetic Paraffinic	LanzaTech	Pre-commercial Demo	Freedom Pines Fuels (USA)	Lignocellulosic feed, gas feed, ATJ Process, Flight proven
Kerosene (ATJ-SPK)	GEVO	Demo	Gevo (USA)	Flight proven
	Byogy/ Swedish Biofuels/	Pilot	Swedish Biofuels (Sweden)	Not approved by ASTM
Hydrothermal Liquefaction (ARA-CLG)	AppliedResearchAssociates(ARA)andChevronLummusGlobal(CLG)	Demo	ReadiJet (USA)	Fats, oils, greases feed
Fischer-Tropsch Synthetic Paraffinic Kerosene (FT-SPK)	Sasol, Shell, Syntroleum,	Commercial/ Demo	SASOL,	Mature technology Economics at a huge scale, fossil feedstock (coal and natural gas)
	Velocys BP others	Demo	Velocys Red Rock Fulcrum	Fulcrum will make FT liquids for co-processing with petroleum (little if any jet fuel is made)

6.000

Long Term SAF Demand

Note: Assumes 2% blending achieved by 2050 in countries without national blending mandates Source: S&P Global Commodity Insights

SAF Production Costs - Pathways

Global SAF production cost for selected feedstocks Indicative

Drive: SAF blending mandate for European aviation to be enforced by no later than 2025 with a blending level increasing progressively over time to 2050

Source: World Economic Forum, Clean Skies for Tomorrow: Sustainable Aviation Fuel as a Pathway to Net-Zero Aviation, 2021

INDICATIVE SAF COSTS BY PRODUCTION PATHWAY

Source: World Economic Forum, Clean Skies for Tomorrow: Sustainable Aviation Fuel as a Pathway to Net-Zero Aviation, 2021

HEFA production costs SAF production cost US Dollars per ton of jet fuel

Second area to be focused is H₂ usage Green hydrogen use)

This area to be focused to decrease overall cost?

Clean Skies for Tomorrow, Sustainable Aviation Fuels as a Pathway to Net-Zero Aviation Insight report, Nov 2020, In Collaboration with McKinsey & Company

• Used Cooking oil

- -Estimated ~2 million tons annually @ 10% of total edible oil consumed in India
- -If goes "down the drain" (environmental burden); Adulteration (Health concern)

• Tree borne oils (FRI)

- Over 400 species identified in India, growing wild
- Lack of demand and no incentives for collection of seeds limits supply side

• Short rotation crops (PAU)

- Non-edible oilseeds like niger, carinata, camelina etc (mustard family)
- Can be planted and grown between staples as a second or third crop
- Agriphotovoltaic

Re-purpose Used Cooking Oil

Major non-volatile by-products of frying are Total Polar Compounds (TPC):

- Dimeric fatty acids
- Triglyceride monohydroperoxides
- Polymerized triglycerides (PTG)
- Cyclic fatty acid monomers and
- Aldehydic triglycerides

Linked diseases include hypertension, atherosclerosis, Alzheimer's disease and fatty liver / hepatomegaly.

UCO from starchy foods may contain traces of acrylamide, a potential carcinogen

The study, said to be the first of its kind in India, carried out by the Observer Research Foundation, Koan Advisory Group and Neste, found that despite food safety regulations outlawing the consumption of UCO in any form, more than half of it is reused. - 2022

- India is the world's second-largest consumer of vegetable oil, and the per capita consumption is around 19-19.80 kg per person per annum.
- /www.indiatimes.com/news/india/more-than-half-of-cooking-oil-gets-reused-in-india-and-it-can-cause-serious-health-issues.html

Chinese government announced an urgent regulation to prevent the worsening of the WCO issue, intended to alleviate the concerns of Chinese consumers regarding food safety (China Food and Drug Administration, 2010; Lu et al., 2013).

China collects and trades over 10 MM TPA already of its domestic UCO (Reuters, USDA)

From 1st July, 2018 onwards, all Food Business Operators (FBOs) are required to monitor the quality of oil during frying by complying with the said regulations. - FSSAI

"Annually, about 23-million tonne cooking oil is consumed in India. There is potential to recover and use about 3 million tonnes of this after cooking," FSSAI

As of now, used cooking oil is either disposed in an environmentally hazardous manner and sometimes even finds it way to smaller restaurants, *dhaabas* and street-vendors and probably adulteration.

- Jet fuel consumption, 8 MMTPA (23-24 year)
- India UCO- 3- 10 MMTA
- SAF: 1.5 5 MMTA (20%-60% Blend with Jet Fuel) (2024-2029)

or

• Green Diesel: 1.5 – 5 MMTA (0.8-2.5%) @200 MMTPA Diesel consumption

https://www.reuters.com/markets/commodities/bidens-ira-drives-surge-us-imports-chinese-used-cooking-oil-2023-09-22/ TheGlobalEconomy.com <u>https://www.thehindubusinessline.com/economy/policy/new-regulations-for-used-cooking-oil-come-into-effect/article24314377.ece</u> China is the world's largest producer of UCO, generating around 11.4 billion litres annually, - U.S. Department of Agriculture (USDA), Lack of domestic policy support has limited its use in the country.

Powered by incentives, U.S. demand for UCO has displaced European purchases.

Exports to Europe from China in the first eight months of 2023 fell by almost 56% from a year earlier.

In June, Germany asked the European Commission to investigate the flow of <u>possibly mislabelled</u> Chinese biofuels into the European Union.

These concerns have "made some of the EU buyers potentially a bit more nervous

Default Life Cyc	le Emissions Values for CO	IRSIA Eligible Fuels (HEFA)	Core	ILUC	I S.
Region	Fuel Feedstock	Pathway Specifications	LCA	LCA	
			Value	Value	(geo267ND)
Global	Tallow		22.5		22.5
Global	Used cooking oil	Cost of export (CO2 emission	cost) 13.9		13.9
Global	Palm fatty acid distillate		20.7	0.0	20.7
Global	Corn oil	Oil from dry mill ethanol plant	17.2		17.2
USA	Soybean oil		40.4	24.5	64.9
Brazil	Soybean oil		40.4	27.0	67.4
Global	Soybean oil		40.4	25.8	66.2
EU	Rapeseed oil		47.4	24.1	71.5
Global	Rapeseed oil		47.4	26.0	73.4
Malaysia & Indonesia	Palm oil	At the oil extraction step, at least 85% of the biogas released from the Palm Oil Mill Effluent (POME) treated in anaerobic ponds is captured and oxidized.	37.4	39.1	76.5

Malaysia & Indonesia	Palm oil	At the oil extraction step, less than 85% of the biogas released from the Palm Oil Mill Effluent (POME) treated in anaerobic ponds is captured and oxidized.	60.0	39.1	99.1
Brazil	Brassica carinata oil	Feedstock is grown as a secondary crop that avoids other crops displacement	34.4	-2 0.4	14.0
USA	Brassica carinata oil	Feedstock is grown as a secondary crop that avoids other crops displacement	34.4	-21.4	13.0
Global	Brassica carinata oil	Feedstock is grown as a secondary crop that avoids other crops displacement	34.4	-12.7	21.7
Global	Camelina oil	Feedstock is grown as a secondary crop that avoids other crops displacement	42.0	-13.4	28.6
India	Jatropha oil	Meal used as fertilizer or electricity input	46.9	-24.8	22.1
India	Jatropha oil	Meal used as animal feed after detoxification	46.8	-48.1	-1.3

Scope for R&D

Drivers for R&D	Status/ Requirements	भारत का नवाचार इजन The Innecation Engine of India		
1. Hydro-processed vegetable oil				
Abundant oils at low costs are required	Identification of land for cultivation on a crop rotation basis for optimized land utilization; Creation of value chains for biomass supply and the establishmen of collection networks, increase crop yields			
Extraction and pre-treatment of oil	Better contaminants removal technology			
Valorization of different types of feed	Standardization of feedstock			
Hydrogen is expensive and not available everywhere	Cheaper, renewable more abundant hydrogen source			
2. Alcohol-to-jet fuel				
Technology for increased selectivity and efficiency for	Improvement in technology required for selective catalysis,	which would		
improving product yield	convert the alcohols more efficiently to jet fuels, more investment			
Complexity and economic viability	Requires simpler technology with reduced operation steps and of for improved economics	complications		
3. Fischer-Tropsch Fuel				
Technological improvements	Better catalysts needed, at present too expensive. Reduction in pre	essure		
Abundant Biomass availability for reducing costs	Requires more concentrated/dense feedstock and optimization of	cost		
4. Power To Liquid (E-Fuel)				
Technological improvements with cheaper catalysts	Expensive catalysts used / Improvement in Catalyst activity and life	2		
Efficient Hydrogen management	Molecular hydrogen use and Requires hydrogen transfer from chea	ap sources		

CSIR-IIP Drop-In Liquid Sustainable Aviation and Automotive Fuel (DILSAAF)

Both CSIR-IIP (1 Step) and HEFA-SPK (2 Step) processes are based on lipid hydroprocessing

CSIR-IIP process for 110TPD feed processing

Similar to Petroleum refinery hydrocracking configuration with additional pretreatment section

Product Distribution (Mass %) Indicative yields based on jatropha and UCO

Vegetable Oil (100) and H₂ (5)

Salient features of the CSIR-IIP Technology

- ✓ Single step catalytic HEFA process (hydroprocessing route) with 6-8% aromatics
- ✓ The process is feed flexible (Non-edible tree borne oils and fats)
- ✓ Multiple reactions in a single reactor: (1) hydrodeoxygenation, (2) selective cracking (3) decarboxylation, decarbonylation (4) hydroisomerization (5) cyclization and (6) aromatization
- A single patented non-noble-metal catalyst is used
- ✓ Typical yield of Sustainable Aviation Fuel (SAF) ~ 25-55%, depending on feed
- ✓ Properties/composition similar to Jet A / Jet A-1 ASTM D1655 specifications and D 7566 Annex A2 (after aromatics removal) and IS :17081
- ✓ Simple, minor variant of petroleum refinery hydrocracking process; easily adapted to existing refinery infrastructure
- ✓ In addition to aviation fuel range hydrocarbons, other useful by-products are naphtha (C5-C9 paraffinic hydrocarbons) and high cetane diesel (C15+, cetane number >70)

Patents Granted : EP3191565A1. US 10.351.782. US 10.457.875

Current activities

- ✓ Construction of demonstration plant at a refinery using DILSAAF CSIR-IIP technology-MRPL-EIL: Working towards technology deployment
- ✓ Aviation fuel being produced for trial and demonstration on Dornier aircraft (Do228) -IAF
- ✓ Green diesel made from DILSAAF process being used in IIP car in campaign mode- 10000 kms successful run using 100% neat Renewable diesel

✓ Working towards ASTM approval and inclusion

- Improving handling procedures and protocols
- Seeking ASTM support and guidance for fast-track approval as a variant of HEFA under Annex A2 with relaxation in aromatics specification, or as a new Annex
- •ASTM Work Group for CSIR-IIP fuel created
- ✓ Feedstock Supply Chain:

UCO: Aggregator-Refinery agreement New feedstocks: poultry/animal fat etc. Rotation Crop: Carinata (Ethopian Mustard plantation)

Thank You Very Much

