
Sustainable Aviation Fuel (SAF)

IC August 2022

Sustainable Aviation Fuel offers significant emissions reduction opportunities & improved fuel efficiency – however cost is still high & blending is limited to 50%

Overview: SAF advantages & drawbacks

+ Advantages	Drawbacks
Significant overall lifecycle CO₂ emission reduction possible (80-100%)	Additional cost due to complex synthesis route (currently ~3x higher cost than conventional kerosene)
Currently readily available decarbonization option based on a variety of different biomass sources	CO ₂ , NOx, H ₂ O and particles still locally emitted
Offers the possibility of extending the lifespan of older aircraft while decreasing their specific emissions	Current tech. limitation of 50% due to missing aromatics (required for proper sealing, deep-dive on next slide)
Offers an improved fuel efficiency (1.5 – 3%) as well as a slightly higher energy density than conventional fuel	Bio-based SAF potential limited due to global feedstock availability
Produces 90% less particle emissions & 100% less SOx emissions compared to JetA1	

The current SAF-Blend is limited to 50% mainly due to the aromatics within jet fuel being responsible for sealing properties of hydraulic nitrile O-rings in the aircraft

Explanation of technical limitations

Aromatics cause swelling of nitrile O-rings within fuel system of aircraft and ensure sealing, but also cause increased particulate emissions (less efficient burning)

Maximum SAF-blends are thus set at **50%** for most production pathways² (Notable exception: 10% for HH-SPK³, HC-HEFA³ and synthesized Iso-Paraffin)

Aircraft can be operated with pure SAF if they were never powered by aromatic-rich fuels before

Research is looking into molecules as SAF additives to provide sealing properties (aromatics, cycloalkanes)

SAF-blending capabilities for different aircraft types

1. Simplified illustration | 2. FT & FT-SKA (Fischer-Tropsch containing aromatics), HEFA (Hydro-processed esters and fatty acids), ATJ (Alcohol-to-jet), CHJ (Catalytic hydro-thermolysis jet fuel) 3. HH-SFK or Hc-HEFA = Hydro-processed hydrocarbons | 4. JF = Jet fuel | 5. Without additives such as synthetic aromatics or cycloalkanes or sealing retrofit Source: WEF, IATA, U.S. DOE, Keamey

Most SAF production routes are bio-based and have max. blend ratios of 50% - Power-to-Liquid (PtL) uses CO_2 from point sources or Direct Air Capture

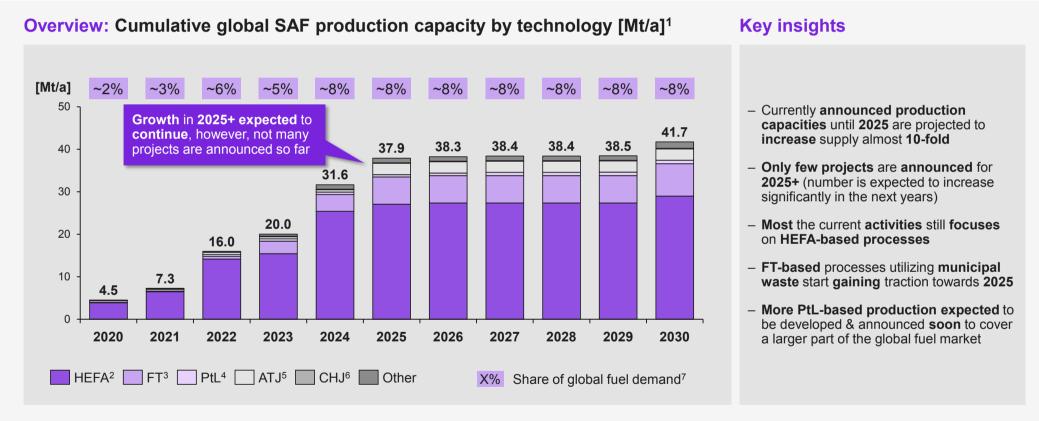
Overview: SAF production routes

Deep- next S		Max. blend	Raw materials	Description	
聞	Power-to-Liquids (PtL)	50 %	Electricity, CO ₂ & H ₂ O	$\rm H_2O$ is split to $\rm H_2$ in an electrolyzer & processed with $\rm CO_2$ into syngas which is converted into liquid SAF	
	Hydro-processed Esters & Fatty Acids (HEFA)	50 %	Vegetable oils, used cooking oil	Feedstock is deoxygenated and consequently hydro- processed to produce the blending fuel	
	FT (Fischer-Tropsch) & FT-SKA (FT containing aromatics)	50 %	Wastes (MSW), agricultural residues, lignocellulosic	The feed is gasified into syngas (CO + H_2), which is catalytically converted to liquid hydrocarbon fuels	
	Alcohol-to-Jet (ATJ, Isobutanol & Ethanol)	50 %	Sugarcane & -beet, agricultural residues, lignocellulosic	The process consists of alcohol conversion through dehydration , oligomerization & hydro-processing	
	Catalytic Hydrothermolysis Jet fuel (CHJ)	50 %	Waste oils or energy oils	Hydrothermal conversion & hydrotreating of the feedstock towards fuel like jet fuel (incl. aromatics)	
	Hydro-processed Hydrocarbons (HH-SPK or HC-HEFA)	10 %	Oils produced from algae	Hydro-processing of bio-derived hydrocarbons unlike fatty acids (from algae botryococcus braunii)	
	Synthesized Iso-Paraffin (SIP)	10 %	Sugarcane, sugar beet	A fermentation process converts the feedstock into hydro- carbon molecules to mix with jet fuel	
7 KEARNEY Sources: IATA, WEF, Biofueldigest, ICCT, Kearney Bio-based SAF production					

Kearney XX/ID

SAF based on Power-to-Liquid are the best option for scale-up as they are not limited by feedstock availability, require less space & enable full decarbonization

Pote	entials: Produ	iction routes feed	exploiting total available stock in the EU for SAF would cover ~25% of total fuel	Purely hypothetical consideration without feasibility assessment			
	Process	Max. feedstock available in the EU	Global 2050 jet fuel demand ¹ : Space	Additional sustainability aspects	Potential TRL ² Feed ³	Cost Today Future	
∰a	Power-to- Liquids (PtL)	Total potential not limited	0.1 – 0.5% of habitable land required	 Must be operated using green energy Very low water demand: 4 L_{H20}/L_{SAF} CO₂ WTW reduction potential: 100% 	••		
	Hydro- processed Esters & Fatty Acids (HEFA)	~2% of total aviation fuel demand in 2030	4 – 19% of habitable land required⁵	 Spec. yield of feedstock not favorable High max. H₂O demand²: 22 000 L/L_{SAF} CO₂ WTW reduction potential: ~80% 			
	Fischer- Tropsch (FT) w/ gasific.	∼16% of total aviation fuel demand in 2030	3 – 7% of habitable land required	 Must use sustainable feedstocks CO₂ WTW reduction potential: ~90% 	•		
	Alcohol-to-Jet (ATJ)	~7% of total aviation fuel demand in 2030	2 – 4% of habitable land required	 Competition with road traffic High max. H₂O demand:⁴ 6 000 L/L_{SAF} CO₂ WTW reduction potential: ~90% 			
🕐 Low potential							

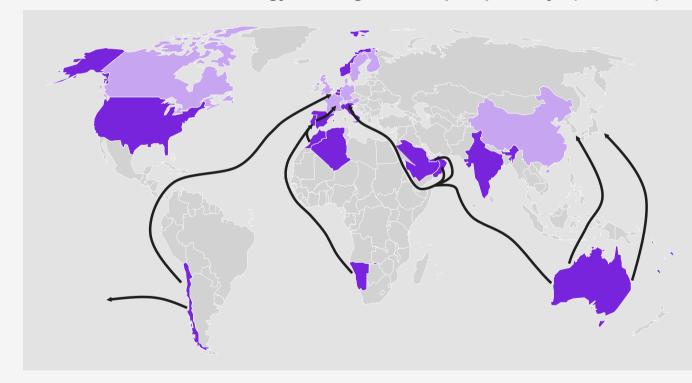

8 KEARNEY

1. Required land depending on feedstock type; 2. TRL – Technology Readiness Level; 3. Feedstock availability potential; 4 H₂O demand depending on feedstock ; 5. Excl. palm oil Source: ICCT, ICAO, Umweltbundesamt, WEF, Kearney

Kearney XX/ID

Most currently announced SAF production facilities are based on the bio-based HEFA process – global market share until 2030 would currently not reach 10%

Situation as of April 2022



9 KEARNEY

1. Based on databases from ICAO & WEF; 2. HEFA – Hydro-processed Esters & Fatty Acids; 3. FT – Fischer-Tropsch; 4. PtL – Power-to-Liquid; 5. ATJ – Alcohol to Liquid; 6. CHJ – Catalytic Hydrothermolysis Jet fuel; 7. Based on aviation growth projections from IEA; Sources: ICAO, WEF, Kearney

Economic competitiveness of Power-to-Liquid synthetic fuels can be improved by focusing on large-scale production in low energy cost regions

Situation as of August 2022

Overview: Potential low energy cost regions & import pathways (selection)

Key insights

- Cost for electricity & energy input decisive for economic competitiveness of Power-to-liquid fuels
- Regions with high availability of cheap renewable electricity positioned well to support large-scale production
- Import/Export of liquid fuels possible using established networks compared to more complex H₂ transport

Legend

- Low energy cost region
- Other potential production region
- → Potential import routes

PtL SAF production in Saudi Arabia is expected to be significantly cheaper than local CO₂ direct air capture and H₂ production in Germany

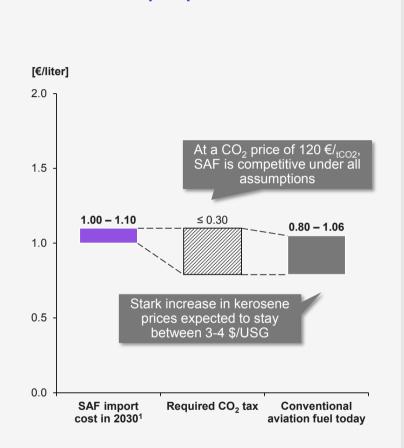
₽↓ (C D പ്പി e 船 Ē Renewable Direct air Fischer-Transport & **Sustainable** RWGS¹ production Tropsch² Conversion aviation fuel energy capture Electricity Electrolvsis CO₂ CO + H₂ SAF Ship End use 1.90 -2.20 €/Lsar 激凝机到 1.00 - 1.10€/L_{SAE} Cost Ιl $\downarrow \downarrow$ \rightarrow \rightarrow \rightarrow trends Ť Electricity prices are a key factor of the total cost of green hydrogen. Saudi Arabia has reported the lowest electricity cost worldwide with 1.04 US ct/kWh from renewable energies.⁴ **Direct air capture** is a promising yet still capital extensive technology to filter CO₂ directly from the atmosphere. 3 As such, it represents a **significant cost component** within the value chain of SAF production. Depending on the production site of H2 and SAF itself, transport from Saudi Arabia to Germany may constitutes an additional cost position to consider

Comparison of possible production value chains for PtL SAFs for 2030 [€/Liter_{SAF}]

1. RWGS = Reverse water-gas shift reaction; 2. Simplified assumption CO₂ conversion ~ 85%; 3. Including conversion, transport and reconversion via the ammonia route 4. See joint Uniper-Kearney study on green hydrogen import pathway competitiveness in 2025; Option B assumes green ammonia imports to Germany Source: Kearney

↑ Small cost increase; → Cost stable; ↓ Small cost decrease; ↓↓ Significant cost decrease; ○ Insufficient current cost information

Example country Saudi Arabia


Alternative pathways (e.g. Methanol) for synthetic fuels exist and deserve further analysis as well

KEARNEY 11

... and looking at 2030 economics, PtL SAF imports could become a viable option

Situation as of June 2022

PtL SAF cost perspective 2030

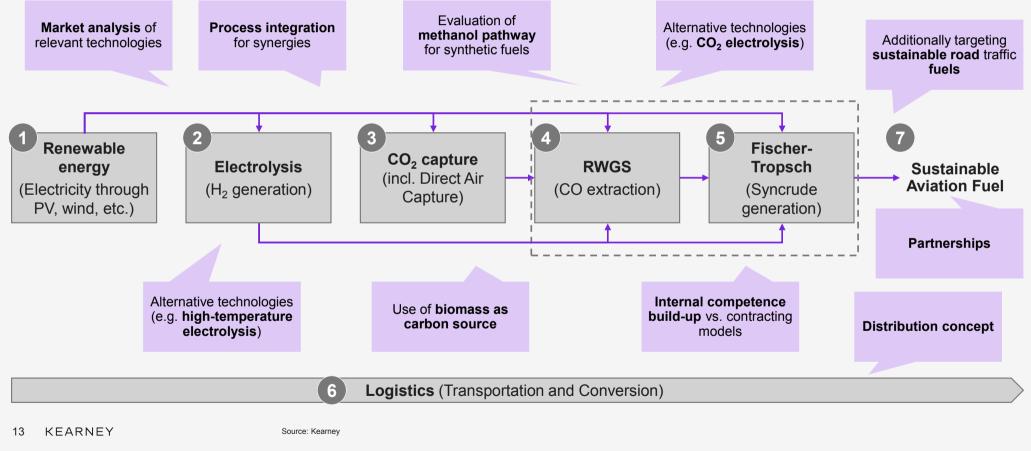
Insights

- PtL SAF will most likely become a costeffective alternative in 2030+
- Currently high kerosene cost due to the energy crisis are likely to stay long-term
- Depending on price development & technology improvement, SAF could be economically competitive without CO₂ taxes in 2030
- Carbon price of ≤ 120 €/t_{CO2} or SAF subsidies are sure to break even with conventional aviation fuel cost - EU ETS CO₂ price is expected to reach 150-200 €/t_{CO2} by 2030⁴

Assumptions

- Current EU ETS CO₂ price of 80 €/t_{CO2} considered
- Specific CO₂ emissions of Kerosene of 2.56 kg_{CO2}/Liter

While not yet competitive with conventional fuels, SAF will become a cost-effective alternative by 2030.


1. SAF production via PtL assumed to reduce 100% of CO₂ emissions; 2. May 2022: CO₂ tax of 80 €/t_{CO2} emitted; 3. Specific CO₂ emissions of Kerosene of 3.39 kg_{CO2}/kg_{JetA1}; Sources: <u>IATA</u>, WEF, Clean Skies for Tomorrow, Kearney

12 KEARNEY

We suggest to investigate additional opportunities and technologies across the value chain of sustainable fuels

Overview: Additional PtL opportunities

Use case example

Kearney XX/ID