5th World Future Fuel Summit 2023

Biofuels: A Sunshine Opportunity for the Green Growth (Biodiesel, Biomethane, BioLPG, Synthetic Fuels Towards Carbon Neutral Path)

Indicators of hydrogen's momentum

Global problems need global solutions

Renewed interest in hydrogen

 $NH_3 - GH_2$

Stronger push to limit carbon emissions

8 Years remaining in the global carbon budget to achieve the 1.5°C goal

137 Countries - announced net-zero emissions as a target by 2050+ (80% Global GHGs)

Falling costs of renewables and hydrogen technologies

80% Decrease in global average renewable energy prices since 2010

55x Growth in electrolysis capacity by 2025 vs. 2015

Strategic push in national roadmaps

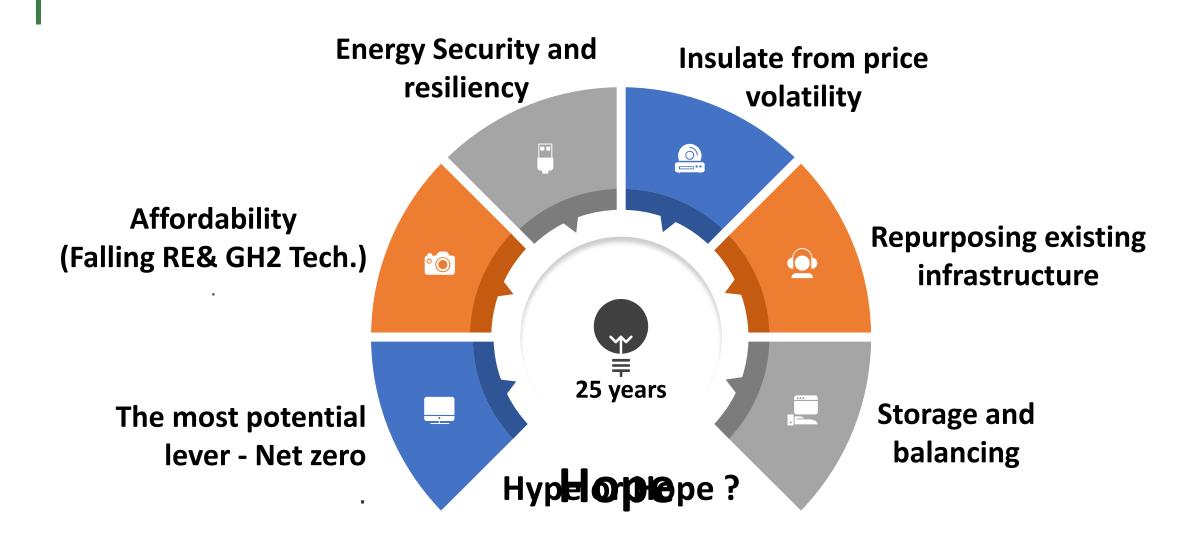
70% Share of global GDP linked to hydrogen country roadmaps to date

"10-10-10" H2 Energy Ministerial, Japan & 10 MMT Europe & IRA (Carbon Credits - \$ 50 B)

10 million fuel cell systems1, 10,000 hydrogen refueling station, in 10 years

Hydrogen's growing momentum

Industry alliances and momentum growing


60 Members of the Hydrogen Council today, up from 13 members in 2017

30+ Major investments announced globally since 2017, in new segments, e.g. heavy duty and rail

Key Drivers of hydrogen's momentum

 $NH_3 - GH_2$

We cannot solve our problems with the same thinking we used when we created them - Albert

Questions and discussions

»India and/or Global (Target geographies)

 $NH_3 - GH_2$

»Ammonia, CH2OH or LOHC as derivatives

»Location of solar or wind (integrated)

»Demonstration/pilot vs viable projects

»Own investment or shared risk distribution

»Green certification or carbon credits or mixed

»Single or multiple technology

»East coast or west cost (exports to be competitive)

»Whole value chain or specific portfolio

»Battery storage or molecule storage or others

»Lower size or bigger size plants (Decentralized or Centralized)

»Government policy vs tenders

»Single partner or multiple partners

»Capturing off-takers or calculated risk for pilots

 »Priorities vs Aspirations
 »Diversified assessments & resources vs own assessment
 »Rapid developments vs continuity vs evolution

Living strategy

»Consortiums (Participation) and/or global engagements

Green Hydrogen Demand -Global/India

- » RMI Analysis, 2022
- » IEA's outlook, 2022
- » Bloomberg NEF, 2022

Sector wise green H2 - a challenges

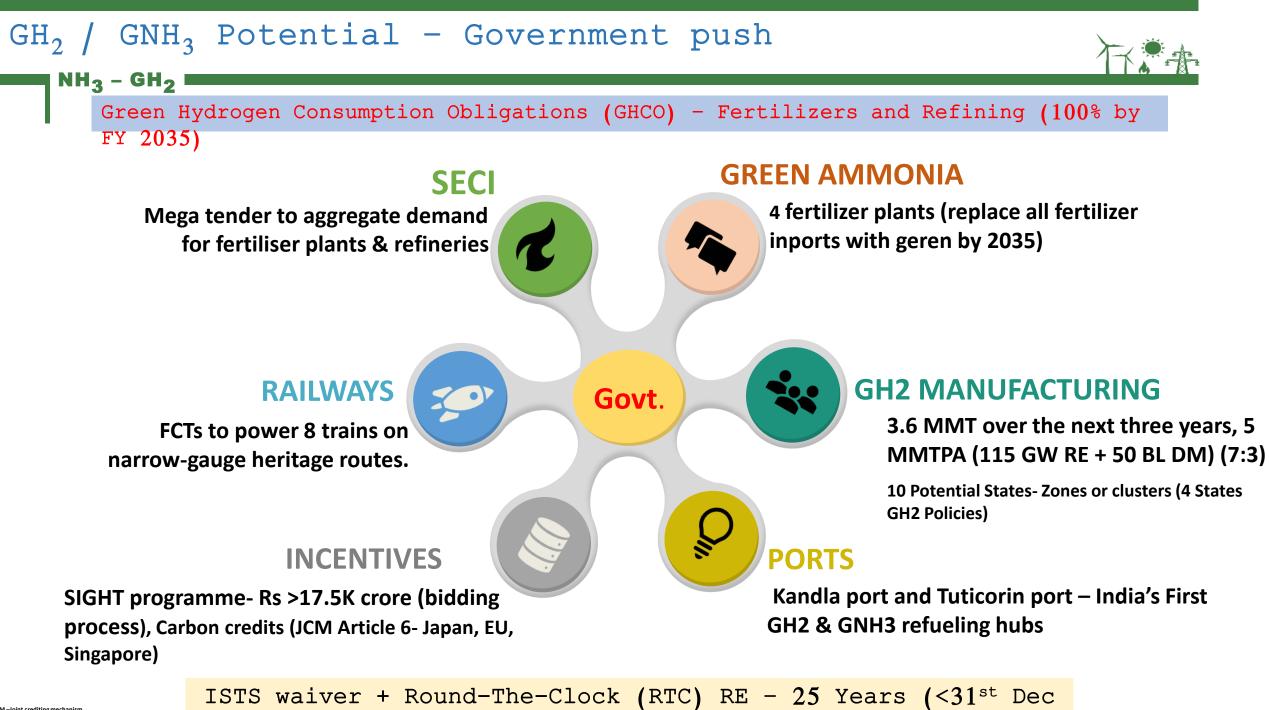
Key sectors in MMT	2025	2030	2035	2040	2045	2050
Refinery	0.1	4.9	7.9	18.8	23.9	27.5
Fertilizers	0.1	2.9	7.2	18.3	25.9	33.7
Steel	1.2	1.6	8.1	28.7	56.3	86.7
Road	0.1	0.3	2.0	5.4	10.0	14.6
Shipping	0.0	0.1	1.2	5.6	14.5	31.3
Captive + IPP Power	0.2	1.6	12.6	27.3	47.4	73.0
Synfuels	1.1	5.8	10.1	21.7	36.5	63.1
CNG Blending	0.1	0.8	9.9	16.2	22.5	27.0
Other Industry	0.0	1.3	6.0	12.6	20.7	32.0
Total	3	19	65	154	258	389

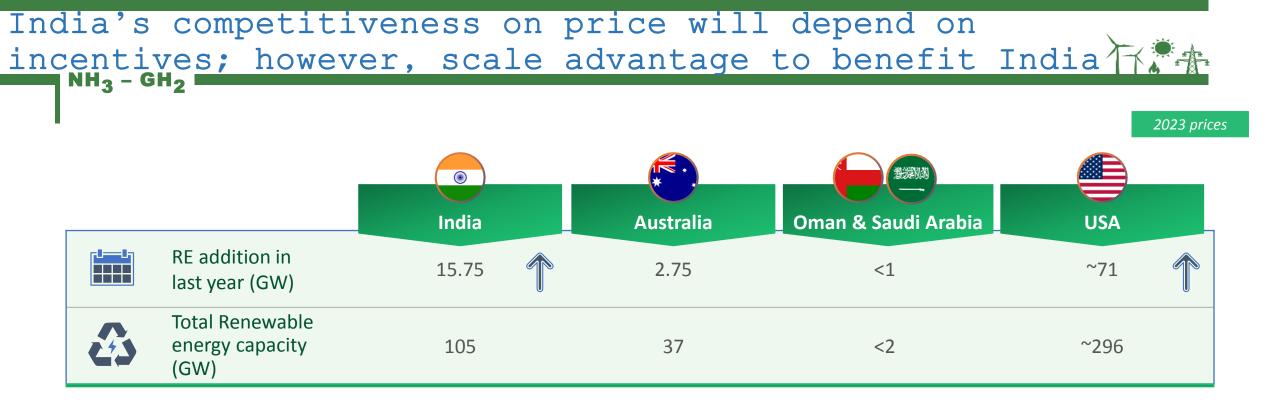
10%, 8%, 6% 5% and 4% - 2030, 2035, 2040, 2045 and 2050

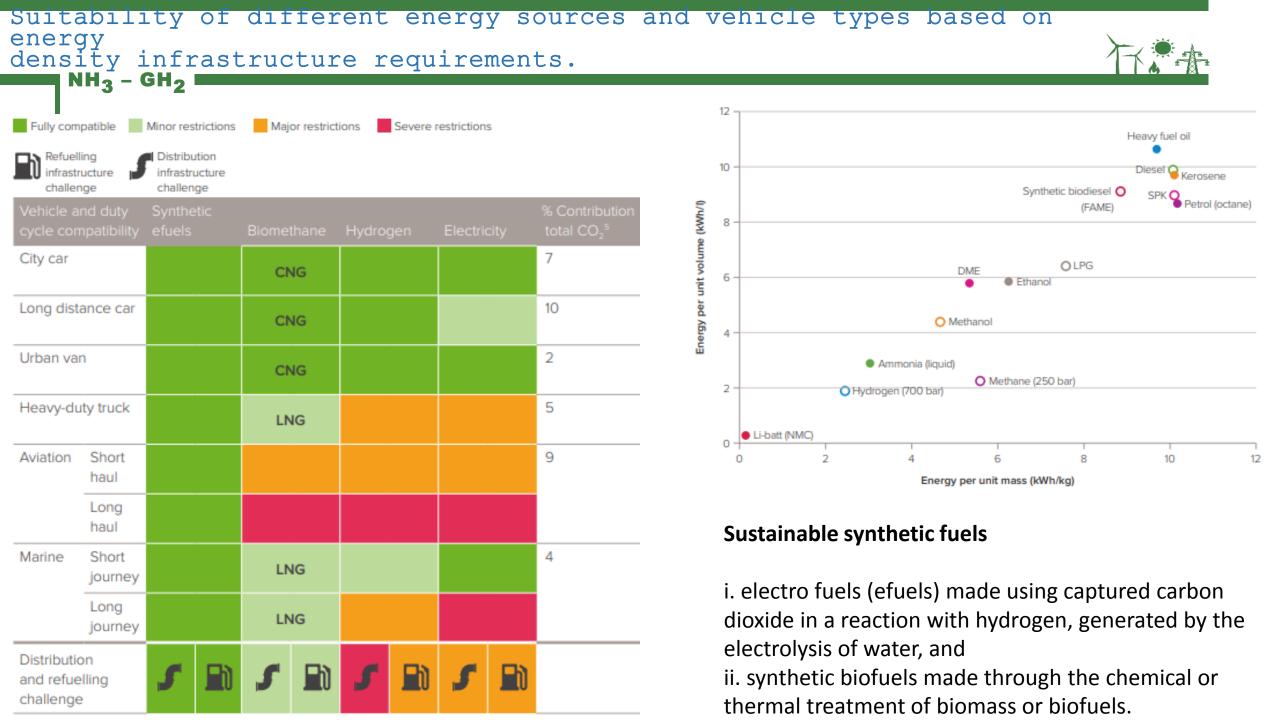
	Key sectors in MMT	2025	2030	2035	2040	2045	2050
	Refinery	0.1	0.7	2.2	4.1	4.8	5.1
	Fertilizers	0.0	0.4	1.8	3.4	4.9	5.5
) - April'23	Steel	0.0	0.1	0.4	2.1	4.7	5.8
/og – Jun'2	Road	0.0	0.0	0.2	1.0	2.3	3.1
yog – Juli z.	Shipping	0.00	0.03	0.1	0.2	0.7	1.2
	Captive + IPP Power	0.0	0.0	0.2	0.9	2.7	4.0
– May'23	Synfuels	0.0	0.0	0.1	0.3	0.8	1.4
	CNG Blending	0.0	0.4	0.6	1.0	1.4	2.5
	Export	0.1	1.9	5.2	9.3	12.9	13.6
	Total	0.2	3.5	10.7	22.2	35.2	42.2

- » Hydrogen Markets in India (ICF-FIPI report) April'23
- » Green hydrogen potential by RMI Niti Aayog Jun'z
- » USAID Report May 2023
- » Deloitte's 2023 global green hydrogen outlook May'23
- » Industry interactions and assessment

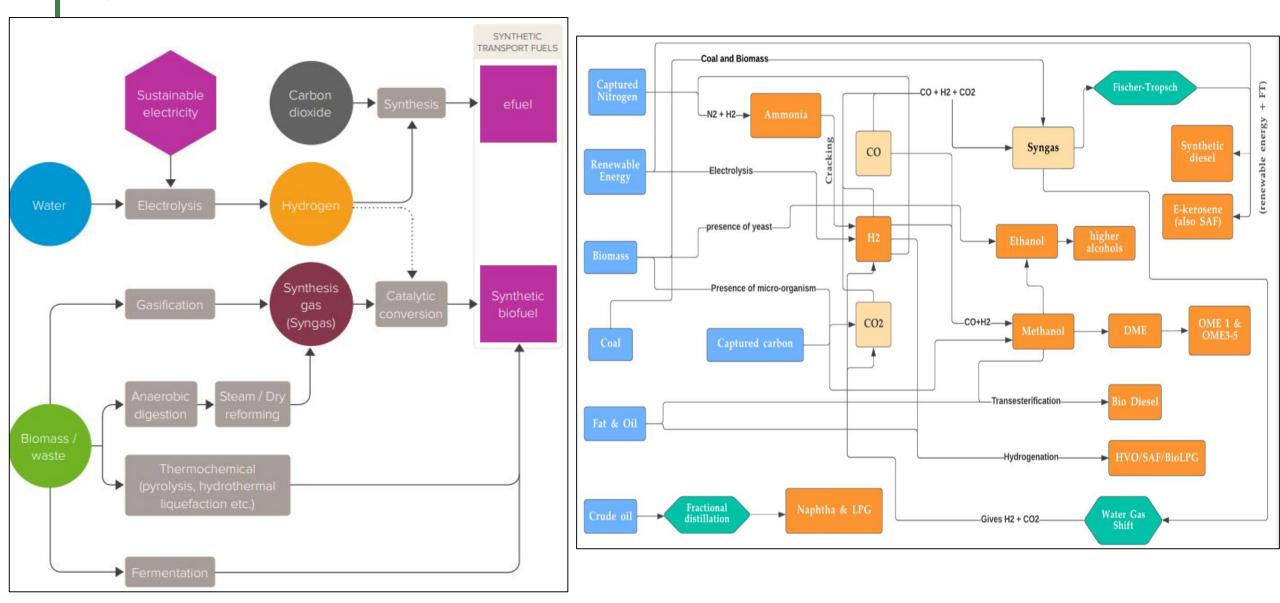
Japan, Korea and Europe likely importers of low-carbon

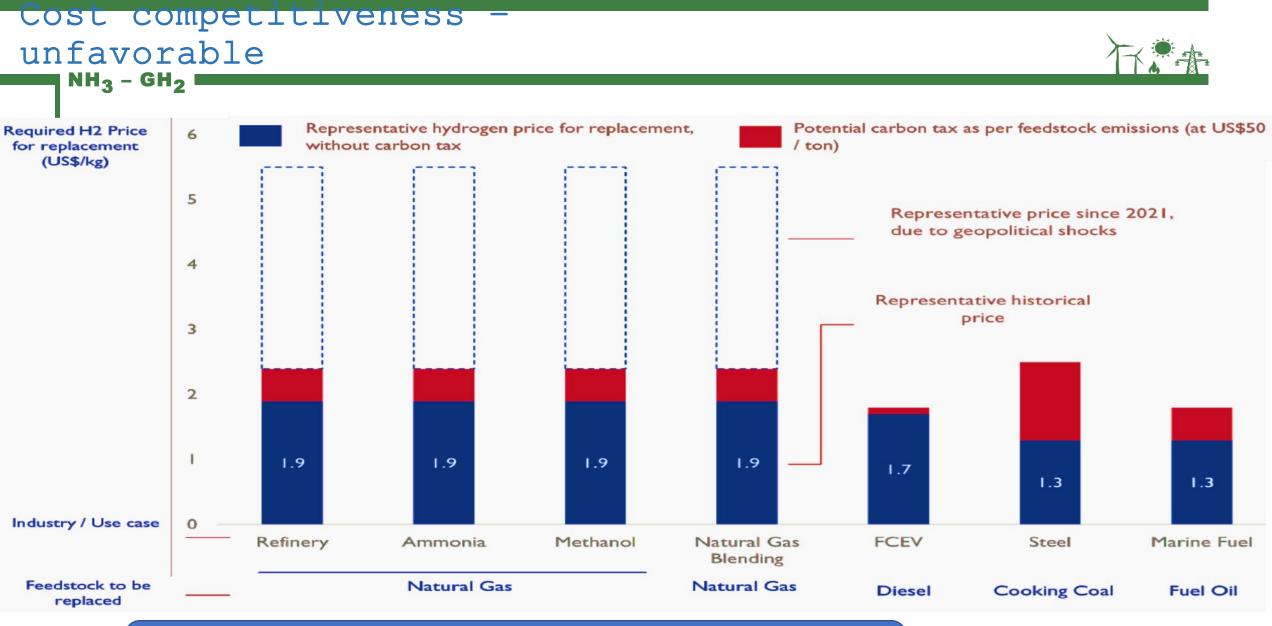

Region	Market conditions to supply	Key import market?
North America	Favorable PV and wind, cheap gas, CCUS potential	× Likely exporter
South America	Favorable PV and wind	Likely exporter
Africa	Favorable PV and wind	Likely self-sufficient
Middle East	Favorable PV and wind, cheap gas, CCUS potential	Eikely exporter
Oceania	Favorable PV and wind, CCUS potential	Eikely exporter
India	Favorable renewables potential	? POTENTIAL WORLD LEADER IN EXPORT
China	Favorable renewables potential, large investments	? Uncertain
Japan	Limited natural resources and renewables potential	Likely major importer
South Korea	Limited natural resources and renewables potential	Likely major importer
Rest of Asia	Fragmented smaller markets, favorable RE potential	Likely self-sufficient
Western Europe	Limited RE and CCUS potential particularly DE and NL	Likely major importer
Rest of Europe	More favorable renewables potential	Likely importer

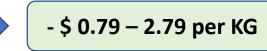

Source: BCG Global H2 Demand Model; BCG Supply Model; BCG analysis. CCU = Carbon capture utilization and storage


US Dept of Energy (DoE) released National Clean Hydrogen Strategy & Roadmap:

- 10-20-50 Mn Tn of Clean
 H₂ by 2030-40-50
- \$1/kg by 2031
- 4+ regional clean H₂ hubs with \$8 Bn fund
- Infra & investment act
- Incentivize high-impact usage of H₂




- India and USA well positioned in renewable energy adding capacities at a faster pace
- Other regions / countries like Australia, Oman and Saudi Arabia have announced large projects:
 - To match this, their capabilities to build evacuation infrastructure at GW level, availability of labour, environmental clearances and EPC skills sets needs to come at a faster pace


Routes to carbon based sustainable liquid synthetic fuels

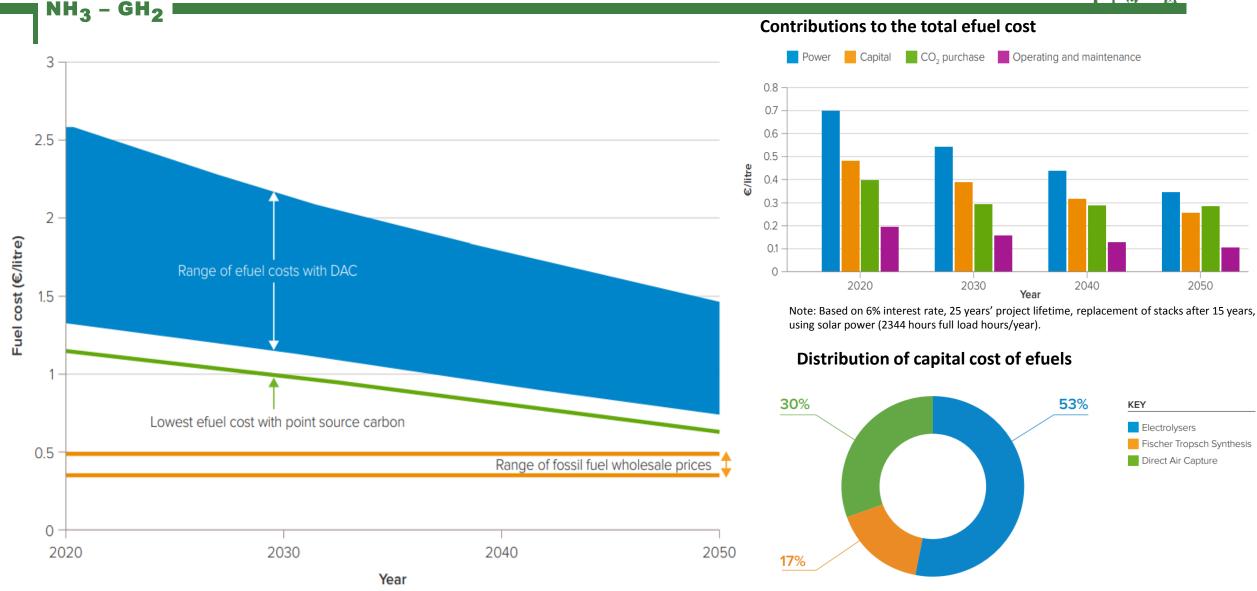
 $NH_3 - GH_2$

- » \$ 0.6 per KG incentive Production + \$ 0.04 per KG electrolyzer incentives
- » \$0.15 per KG due to carbon credits (may rise)
- » Possibly \$1.5-\$2.0 per KG through scaling up & design of the plant size

 $NH_3 - GH_2$

Facility/Operator name	Country	CO_2 feedstock	Efuel output	Output quantity
Carbon Recycling International (Vulcanol) ¹¹¹	lceland	Geothermal plant flue gas	Methanol	4000 tonnes/year
FReSME project (2020) ¹¹²	Sweden	Blast furnace gas	Methanol	50 kg/hr
MefCO ₂ ¹¹³ (final phase construction)	Germany	Power plant flue gas	Methanol	1 tonne/day (planned)
Soletair ¹¹⁴	Finland	Direct Air Capture	Petrol, Kerosene and Diesel	100 kg/hr
Sunfire ¹¹⁵	Germany	Direct Air Capture	E-Crude (E-diesel)	Demonstration: 3 tonnes in 1500 hrs
Sunfire (2022) ¹¹⁶	Norway	Direct Air Capture	E-Crude (E-diesel)	8000 tonnes/year (planned 1st stage)

Classification NH₃-GH₂


Fuel	Substitute	Technologies Deployed		H2 Content (by weight %)	
Diesel	*Biodiesel, **HDRD (Green Diesel), Bio-based oxygenates, (alcohols and ethers)	Esterification, Hydro-Processing, Fermentation, Syngas Conversion	Fuels		
Aviation Turbine	Hydro-Processing, Sugar Conversion,		H2O2	5.88%	
Aviation Turbine**Sustainable Aviation Fuel (or, Bio-ATF)Hydro ProcessFuel (ATF)Bio-ATF)Process		Alcohol-to-Jet, Fischer–Tropsch Process	NH3	17.65%	
Gasoline (Petrol/Motor Spirit)	*Ethanol (1G), **Ethanol, (2G), **Methanol, Green (drop-in) gasoline	Fischer–Tropsch Process, Gas Fermentation, Alcohol-to-Gasoline, Hydro-Processing, Pyrolysis/Catalytic Cracking	Methanol	12,5% (99 grams/litre)	
Compressed natural gas (CNG)/piped natural (PNG)	*Bio-CNG/Bio-PNG, HCNG, **Bio- H2	Waste Fermentation	Ethanol	13.13%	
	ine **Green heavy distillate, biomass- /Industrial/F derived oils Hydro-Processing, Pyrolysis/Fluid Liquefaction, MSW-thermochemical		Natural Gas	25.13%	
Marine Fuel/Industrial/F uel Oil			Gasoline/Gasoil	~14%	

(*) Indicates technologies are available.

(Indicates emerging technologies (in development). (Hydrogenation-Derived Renewable Diesel) Source: DBT, Ministry of Science and Technology.

Efuel cost forecasts

Note: Based on technology options for diesel using Direct Air Capture, 6% interest rate, 25 years' project lifetime, using solar (2344 hours/year) and wind power (3942 hours/year).

Note: Based on 6% interest rate, 25 years' project lifetime, Direct Air Capture from Temperature Swing Absorption (TSA), using solar power (capacity factor not included in electrolyser capital estimate).

- Promote sustainable development of hydrogen markets, beginning with local or regional networks close to renewable electricity supplies, hydrogen production plants and hydrogen consumption centres.
- Exploring options for the production of sustainable biomass feedstocks including <u>reliable</u> feedstock supply-chain
- Introduction of Renewable Transport Fuel Obligation (RTFO)
- Establish Fair carbon pricing mechanism (incl. Taxation), overall life-cycle costs per unit of
- greenhouse gas emission reduction
- Removal of GST anomalies
- Partnerships and collaborations

THANK YOU

A company's long-term success depends on how it progresses through the stages of industry consolidation. Speed is everything.