# "Hydrogen as the ultimate fuel: Challenges and Opportunities"



**Dr. Sanjeev S. Katti**Director General

ONGC Energy Centre (OEC) 8<sup>th</sup> Floor, Core 4, SCOPE Minar, Laxmi Nagar, Delhi – 110 092

Sanjeev katti@ongc.co.in

### **Transition in Global Energy Systems**





In the age of energy gases, the transition on global energy systems, Dunes (2001)

### **Transition to Hydrogen Energy**





Present Scene :

Petrol /Diesel /CNG based Automobiles & Power Generation

Intermediate Stage :

Electric & Hybrid Vehicles; Bio-Fuel / Synthetic Fuel based Vehicles & Power Generation

Ultimate Objective :

Environment Friendly and Carbon Free Hydrogen Based Vehicles & Power Generation

### Main Hydrogen Pathways: The Long Term Perspective





• Web Source: IEA, France. Report on "Hydrogen Production R&D: Priorities and Gaps", 2006 under Hydrogen Implementing Agreement

HC1 Hewlett-Packard Company, 8/20/2019

### **Hydrogen: The Ultimate Energy (Carrier)**



### **Reaction:**

$$H_2(g) + \frac{1}{2}O_2(g) \iff H_2O(I) + 286 \text{ kJ/mole}$$

### **Hydrogen production paths**





### **Thermochemical Hydrogen Generation**





## Chemical Processes Convert High-Temperature Heat and Water to Hydrogen and Oxygen



Technologies are yet to be commercialized

### **Energy Source for Hydrogen**



#### **Heat /Electricity**

#### **Nuclear:**

- Cheaper and reliable in long run.
- Availability of Super-Critical Water Reactor (SCWR) that can deliver temperature up to 600 °C but reactor temperature specific to application.
- The issue is safely coupling with the thermo-chemical cycle.

#### Solar:

- Totally safe and reliable and will work out comparable with Nuclear in long run.
- Temperature has no limitation with proper combination of concentrators, can provide >2000K.
- Need for storage, which is also required to supply heat for Hydrogen production process cycles.

#### Other sources

Wind: Electricity Generation

Geo-Thermal: Electricity Generation / Heat Supply

### **Technical Challenges**



- > Technologies are under development in laboratory
- Corrosion problems (Material selection & availability)
- Cost-effective catalysts, membranes and electrodes
- ➤ Electrochemical Simulations/Modeling
- Integration of electrochemical reactors with thermal reactors
- Energy efficient separations/purifications
- Heat source identification, selection and management
- Equipment availability (Design & Develop Indigenous Equipment)

ONGC Energy Centre (OEC) has initiated indigenous technology development drive in 2007.

### **OEC** approach



#### **Development of Thermochemical Hydrogen Generation program**



## Hydrogen Generation Ecosystem-Integrative Projects in hand



- ✓ Studies on integration of heat source with Cu-Cl cycle
- ✓ Studies on alternative approaches to reduce heat requirement to I-S cycle
- ✓ Studies on alternative approaches to improve separation strategies in Cu-Cl cycle
- ✓ Simulation/Modeling studies on both cycles to improve process, separations, etc.
- ✓ Development of SOEC / SOFC systems
- ✓ Development of other processes and materials for H₂ storage



### **Activities**



Process improvement for Energy efficient separations, Alternate options etc.,

> Affordable Catalysts Membranes, electrodes, development

> > Heat Source development and integration

Materials Development

Current focus

Scale up / Long term performance of integrated metallic systems

H.T-H.P Corrosion testing

Electrochem cell operation in continuous mode

Simulations/modeling, Flow sheet development



## Cu-Cl cycle



## New Cu-Cl cycle by OEC-ICT

|   | Reactions                             | Cu-Cl Cycle                                                                 |
|---|---------------------------------------|-----------------------------------------------------------------------------|
| 1 | Hydrogen Generation (475 ± 25°C)      | $2Cu_{(s)} + 2HCI_{(g)} \rightarrow 2CuCI_{(l)} + H_{2(g)}$                 |
| 2 | Electrochemical (ambient temperature) | $4CuCl_{(I)} \rightarrow 2CuCl_{2(aq)} + 2Cu_{(s)}$                         |
| 3 | Drying (120 ± 20°C)                   | $2CuCl_{2(aq)} \rightarrow 2CuCl_{2(s)}$                                    |
| 4 | Hydrolysis (375 ± 25°C)               | $CuCl_{2(s)}+H_2O_{(g)} \rightarrow CuO_{(s)}+2HCl_{(g)}$                   |
| 5 | Decomposition (475 ± 25°C)            | $CuCl_{2(s)} \rightarrow CuCl_{(l)} + \frac{1}{2} Cl_{2(g)}$                |
| 6 | Oxygen Generation (500 ± 25°C)        | $CuO_{(s)}+\frac{1}{2}CI_{2(g)} \rightarrow CuCI_{(l)}+\frac{1}{2}O_{2(g)}$ |

### **Progress: Cu-Cl cycle**



- ✓ A new multi-step Cu-Cl cycle has been established. Patented the process in 7 countries viz., USA, Canada, UK, Japan, China, Korea and India.
- ✓ An integrated lab scale engineering facility in metallic system has been developed and demonstrated for H₂ generation@ 25 lph for Cu-Cl cycle using indigenous resources.
- ✓ Long term performance data being generated for last 2 years for designing a 12 MT / year hydrogen generation plant to be set up by OEC.
- ✓ A new electrochemical cell has been designed / fabricated for CuCl electrolysis (60A stack developed) and already patented in 5 countries viz., USA, Canada, UK, Japan, China.
- ✓ Developed cost-effective alternative materials for platinum viz., MMO coated Ti, Graphite electrode materials that yielded 700 mA/cm² current density at ~1.0 V; further integration with main cycle in progress.
- ✓ Created High Temperature corrosion testing facilities for screening materials with and without coating in molten Cu-Cl environment at 550°C.
- ✓ Developed indigenous polymeric membranes for electro-chemical process.
- ✓ Developed molten salt system for application in Cu-Cl cycle in conjunction with solar heat.
- ✓ Designed Pressure Swing Distillation system for HCl-Water separation process.

### **OEC-ICT Closed-Loop metallic facility: Cu-Cl cycle**





H<sub>2</sub> generation @25lph: Closed-loop metallic facility is operational at ICT, Mumbai since 2015; planning for 12 MT/day facility at OEC using Solar power



## I-S cycle

### Schematic of I-S Cycle





## Global plans vs. Current status: I.S Cycle (Concept to Commercialization)



| S. No | Agency /<br>Country          | Year<br>started             | Year<br>end | Stages with scales and time lines       |                                      |                                 |                                                          |                                                                                                                                                               |
|-------|------------------------------|-----------------------------|-------------|-----------------------------------------|--------------------------------------|---------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       |                              |                             |             | Lab                                     | Lab Engg.                            | Pilot                           | Commercial                                               | Reference / Status                                                                                                                                            |
| 1     | G.A, SRL-USA,<br>CEA-France, | 1970                        | 2017        | -<br>1980                               | 75-150<br>L/h 2008<br>(2009)         | 50<br>M³/h<br>2012              | 80,000 M <sup>3</sup> /h<br>2017                         | NHI 10 yr prog plan 2005<br>Capriaglio <i>et al.</i> , GA.ACS<br>symp series, 1980 DOI:<br>10.1021/bk-1980-0116.ch016<br>Benjamin Russ GA. INL report<br>2010 |
| 2     | JAERI, Japan                 | 1997                        | 2017        | 1 L/h<br>32 L/h<br>glass<br>2004        | 150 L/H<br>Metallic 2016             | 30<br>M <sup>3</sup> /h<br>2004 | 1000 M <sup>3</sup> /h<br>(connected to<br>VHTR)<br>2017 | Sadhankar, R AECL, 2008<br>Kasahara <i>et al.</i> IJHE<br>42(2017),13477-13485                                                                                |
| 3     | KAERI, Korea                 | 2004                        | 2020        | 10 L/day<br>2009                        | 100 L/H<br>(50 l/h 2017              | 30-100<br>M³/day                | 7821 M.T/day<br>2020                                     | Shin <i>et al</i> , 3 <sup>rd</sup> NIE, 2009<br>Kim <i>et al</i> . KAERI online<br>publication March 2017                                                    |
| 4     | INETA, China                 | 2005                        | 2020        | 10<br>L/day<br>2010                     | 100<br>L/h<br>2013<br>( 60 l/h 2014) | 100<br>M³/h<br>2019             | 2020                                                     | Mao <i>et al</i> IJHE 35(2010) 2727 Ping <i>et al</i> Renewable and Sustainable Energy Rev May 2017                                                           |
| 5     | India                        | BARC<br>2006<br>OEC<br>2008 | 2020        | 1-25<br>L/day<br>2010<br>(2015<br>2018) | 150-300<br>L/day<br>2018-19          | 1MT/day                         | 80,000 M <sup>3</sup> /h<br>2022                         | Latest BARC /OEC /<br>MNRE Reports                                                                                                                            |

### Closed-loop experimental facilities at IIT-D





H<sub>2</sub> generation @5lph: Closed-loop operation in quartz / glass set operational since 2018; planning for scale up in metallic facility

## I-S open-loop cycle: Proposed routes of H<sub>2</sub> production





### **OEC-IIP Open-loop Experimental facility: IIP, Dehradun**





Proof of concept in quartz / glass set up is nearing completion; planning for scale up in metallic facility to produce 10-12MT/day at MRPL

## New generation Sulfur recovery process is a value addition to Refinery







## New Initiatives

### New Initiatives: Alternate Approach in HI section



**OEC and BITS-Goa have initiated work on** Electrochemical decomposition of HI, an alternate route to HI section in I-S cycle



### **New Initiatives: Development of SOFC**



OEC and CGCRI have initiated work on "LSCF-based novel composite cathode, Fabrication of SOFC short stack using single cells to try on 3kV cell"



#### From elementary cell ...

to a stack



Cell : tri layer ceramic 200-300  $\mu$ m, where electrochemical reactions occur

Interconnector: metal distributing electrons and mechanical support

2 main difficulties : Ceramic metal assembly

Leak tightness

### **New Initiatives: Development of Sensors**



#### **Sensors Development:**

- OEC in association with BARC has initiated development of sensors for H<sub>2</sub>S, SO<sub>2</sub> for application in various ONGC Assets.
- At ONGC-Uran plant, preliminary studies on sensor testing are encouraging.
- OEC is in the process to develop H<sub>2</sub> and Cl<sub>2</sub> sensors with IGCAR.





H<sub>2</sub> sensor based on Pd films on Pt-100

H<sub>2</sub>S sensor based on SnO<sub>2</sub>: CuO thin films







## Hydrogen costs from hybrid solar PV and onshore wind systems in the long term





### **Conclusion**



- World is gearing up for meeting imminent energy transition in middle of this century with the help of renewables where water and hydrogen are the lead players.
- Hybrid Thermochemical water splitting processes are attractive green technology options for large scale production of Hydrogen.
- Electrochemical applications play vital role in reduction of energy consumption in the Thermochemical cycles but issues related to integration and continuous operations need to be worked out.
- ➤ OEC in association with partner organizations have developed Internationally Patented Thermochemical water splitting process based on indigenous equipment and facilities, membranes, catalysts, etc., working on further scale up.
- Possibility for reduction in operating temperature of I-S process with alternate approaches using electrochemical routes in processes, material challenges are addressed at present.
- Demonstration of Integrated Hydrogen Production facility comprising of Concentrated Solar Thermal Power Plant, Molten Salt Storage and Closed Loop Cycle for Thermochemical Splitting of Water, at a pre-pilot level capacity of about 12 MT/day at ONGC-OEC premises in planning.

## What is the long term future?









## Thank You!

## **Demand for Hydrogen**





### Hydrogen



### The Growing Industrial Demand for Hydrogen Creates a Bridge to the Hydrogen Economy

